|
In number theory, the optic equation〔Dickson, L. E., ''History of the Theory of Numbers, Volume II: Diophantine Analysis'', Chelsea Publ. Co., 1952, pp. 688–691.〕 is an equation that requires the sum of the reciprocals of two positive integers ''a'' and ''b'' to equal the reciprocal of a third positive integer ''c'': : Multiplying both sides by ''abc'' shows that the optic equation is equivalent to a Diophantine equation (a polynomial equation in multiple integer variables). ==Solution== All solutions in integers ''a, b, c'' are given in terms of positive integer parameters ''m, n, k'' by〔 : where ''m'' and ''n'' are coprime. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「optic equation」の詳細全文を読む スポンサード リンク
|